The music we are

The Music We Are

Did you hear that winter’s over?
The basil and the carnations

cannot control their laughter.
The nightengale, back from his wandering,

has been made singing master over
all the birds. The trees reach out

their congratulations. The soul
goes dancing through the king’s doorway.

Anemones blush because they have seen
the rose naked. Spring, the only fair

judge, walks in the courtroom, and
several December thieves steal away.

Last year’s miracles will soon be
forgotten. New creatures whirl in

from nonexistence, galaxies scattered
around their feet. Have you met them?

Do you hear the bud of Jesus crooning
in the cradle? A single narcissus

flower has been appointed Inspector
of Kingdoms. A feast is set. Listen.

The wind is pouring wine! Love
used to hide inside images. No more!

The orchard hangs out its lanterns.
The dead come stumbling by in shrouds.

Nothing can stay bound or imprisoned.
You say, “End this poem here and

wait for what’s next.” I will. Poems
are rough notations for the music we are.

-Rumi

Poems are rough notations for the music we are.
–Rumi

The music we are

Handling complexity

Under conditions of true complexity–where the knowledge required exceeds that of any individual and unpredictability reigns–efforts to dictate every step from the center will fail. People need room to act and adapt. Yet they cannot succeed as isolated individuals, either–that is anarchy. Instead, they require a seemingly contradictory mix of freedom and expectation–expectation to coordinate, for example, and also to measure progress toward common goals.

–Atul Gawande

Handling complexity

Simple, Complicated, and Complex

Brenda Zimmerman and Sholom Glouberman have proposed a distinction among three different kinds of problems in the world: the simple, the complicated, and the complex.

Simple problems, they note, are ones like baking a cake from a mix. There is a recipe. Sometimes there are a few basic techniques to learn. But once these are mastered, following the recipe brings a high likelihood of success.

Complicated problems are ones like sending a rocket to the moon. They can sometimes be broken down into a series of simple problems. But there is no straightforward recipe. Success frequently requires multiple people, often multiple teams, and specialized expertise. Unanticipated difficulties are frequent. Timing and coordination become serious concerns.

Complex problems are ones like raising a child. Once you learn how to send a rocket to the moon, you can repeat the process with other rockets and perfect it. One rocket is like another rocket. But not so with raising a child, Zimmerman and Glouberman point out. Every child is unique. Although raising one child may provide experience, it does not guarantee success with the next child. Expertise is valuable but most certainly not sufficient. Indeed, the next child may require an entirely different approach from the previous one.

And this brings up another feature of complex problems: their outcomes remain highly uncertain.

Yet we all know that it is possible to raise a child well.

It’s complex, that’s all.

Atul Gawande
The Checklist Manifesto: How to Get Things Right (find in a library)

Simple, Complicated, and Complex

Figures are not always facts

The Woman and the Hen

A Woman had a Hen that laid an egg every day. The Fowl was of superior breed, and the eggs were very fine, and sold for a good price. The Woman thought that by giving the Hen twice as much food as she had been in the habit of giving, the bird might be brought to lay two eggs a day instead of one. So the quantity of food was doubled. The Hen thereupon grew very fat, and stopped laying altogether.

Aesop
Aesop’s Fables (find in a library)

Figures are not always facts

There is no self-sufficient cause

It is obvious that effects depend upon causes, but causes also, in a subtle sense, depend upon effects. Every cause itself is an effect of its own causes, which preceded it, and therefore arises in dependence upon its respective causes…effects arise in dependence upon causes. Here cause and effect are in a temporal sequence, an effect occurring after its cause.

Because the designation of something as a “cause” depends upon consideration of its effect, in this sense a cause depends upon its effect. Something is not a cause in and of itself; it is named a “cause” in relation to its effect. Here the effect does not occur before its cause, and its cause does not come into being after its effect; it is in thinking of its future effect that we designate something as a cause.

Agent and action depend upon each other. An action is posited in dependence upon an agent, and an agent is posited in dependence upon an action. An action arises in dependence upon an agent, and an agent arises in dependence upon an action. Nevertheless, they are not related in the same way as cause and effect, since the one is not produced before the other.

How is it that, in general, things are relative?

How is it that a cause is relative to its effect?

It is because it is not established in and of itself. If that were the case, a cause would not need to depend on its effect. But there is no self-sufficient cause, which is why we do not find anything in and of itself when we analytically examine a cause, despite its appearance to our everyday mind that each thing has its own self-contained being.

Because things are under the influence of something other than themselves, the designation of something as a cause necessarily depends upon consideration of its effect.

—Tenzin Gyatso, the 14th Dalai Lama

There is no self-sufficient cause

Review: Risk Savvy – How to Make Good Decisions by Gerd Gigerenzer

Are you risk-literate?

Do you understand how reputable cancer treatment centers in the U.S. lie or mislead you by confounding statistics in their marketing?

Which preventive cancer screenings cause more harm than good? Which preventive cancer screenings are worth getting?

Gerd Gigerenzer’s Risk Savvy (find in a library) is a crash course in risk literacy and a fun romp through several areas in which understanding risk and uncertainty matters enormously: your health and medical care (including defensive medicine and preventive screenings), bank finance and your money, leadership, romance, terrorism, and various runaway panics – Do you remember mad cow disease and how many people died from it?*

I first encountered Gigerenzer while studying cognitive models that could be implemented in computational agents, and specifically, his highly-cited papers on “fast and frugal” heuristics for us boundedly-rational mortals. [Note to economists: this includes you.] While his academic papers are quite accessible, Risk Savvy (find in a library) feels approachable to an even wider audience.

What’s particularly fun and enjoyable about the book is that Gigerenzer doesn’t just pick on laypeople for not understanding risk, but he also picks on experts for not only communicating risk so poorly, but for often lacking risk literacy, themselves. He backs this up with experimental data collected from physicians, bankers, and executives, and uses as a foil some of the best experts at developing simple solutions to complex problems: children.

Gigerenzer includes practical tools that could revolutionize the way we communicate and think about risk – for example, discontinuing the use of relative risks with unspecified or poorly specified reference classes (e.g., a 20 percent risk reduction!) and instead using absolute risks (e.g., a reduction in risk from 5 in 1000 to 4 in 1000).

Gigerenzer also advocates the use of icon boxes and fact boxes (examples available from the Harding Center for Risk Literacy) when health professionals and health-related organizations communicate with individuals.

The concluding chapter suggests ways that we might revolutionize school by teaching risk literacy using simple tools from a very early age. Gigerenzer specifically focuses on applied statistical thinking, rules of thumb, and psychology of risk and suggests focusing these in three areas: health literacy, financial literacy, and digital risk competence. He backs his suggestions with experimental data demonstrating that children as young as the second grade can, when presented with statistical information in the proper format, learn to accurately calculate risk.

Overall, I enjoyed Gerd Gigerenzer’s Risk Savvy (find in a library) and recommend it to just about anyone, and especially to those working in health-related professions and anyone interested in making better decisions about their health, finances, and other areas of life.

*Over 10 years, about 150 people in all of Europe died of mad cow disease. In the same ten years, the other cause that led to an equivalent number dying was drinking scented lamp oil.

Review: Risk Savvy – How to Make Good Decisions by Gerd Gigerenzer

What are you measuring?

The gross national product does not allow for the health of our children, the quality of their education or the joy of their play. It does not include the beauty of our poetry or the strength of our marriages, the intelligence of our public debate or the integrity of our public officials.

It measures neither our wit nor our courage, neither our wisdom nor our learning, neither our compassion nor our devotion to our country, it measures everything in short, except that which makes life worthwhile.

—Robert F. Kennedy

What are you measuring?

Three truths of dynamical systems

1. Everything we think we know about the world is a model. Every word and every language is a model. All maps and statistics, books and databases, equations and computer programs are models. So are the ways I picture the world in my head–my mental models. None of these is or ever will be the real world.

2. Our models usually have a strong congruence with the world. That is why we are such a successful species in the biosphere. Especially complex and sophisticated are the mental models we develop from direct, intimate experience of nature, people, and organizations immediately around us.

3. However, and conversely, our models fall far short of representing the world fully. That is why we make mistakes and why we are regularly surprised. In our heads, we can keep track of only a few variables at one time. We often draw illogical conclusions from accurate assumptions, or logical conclusions from inaccurate assumptions. Most of us, for instance, are surprised by the amount of growth an exponential process can generate. Few of us can intuit how to damp oscillations in a complex system.

You can’t navigate well in an interconnected, feedback-dominated world unless you take your eyes off short-term events and look for long-term behavior and structure; unless you are aware of false boundaries and bounded rationality; unless you take into account limiting factors, nonlinearities, and delays. You are likely to mistreat, misdesign, or misread systems if you don’t respect their properties of resilience, self-organization, and hierarchy.

Donella (Dana) Meadows
Thinking in Systems: A Primer (Find in a library)

Three truths of dynamical systems